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One encounters various problems in modern technology that require the 
study of simultaneous vibrations of an elastic body and a liquid. The 
study of this problem in its general statement is complex. This 
paper presents an approximate theory that is based on tbe following 
simplifying assumptions: (a) Linearity of the problem: all displace- 
ments and velocities are assumed to be infinitesimally small, and 
consequently the equations of motion and the boundary conditfons are 
linearized; Ib) beam model: the real elastic body is replaced by a 
beam with a straight neutral, axis, and the correctness of the hypothesis 
of plane sections is assumed; {c) the fluid is ideal and incompress- 
ible, and its rnot~o~ is ~~r~t~tio~a~~ (df the body farce is the force 
of gravity; (el the external forces are ~~nservat~ve~ Presented here 
are: the derivation of the general equations, the solvability of 
fundamental problems, an analysis of the spectrum, a formulation of 
the variational principles and their derivation. 

1. Plane flexural vibrations of a beam with a cavity com- 
pletely filled with liquid. 1. Introduce a coordinate system in the 
following manner (Fig. 1): The y-axis is directed along the neutral axis, 
the x- and z-axes are fixed in a section perpendicular to the y-axis so 
that the coordinate system is a right-handed system. The length of the 
beam will be denoted by 1, the mass per unit length by mfy 1, the bending 

rigidity by cfyf. Be shall study only the ease 
in which the vibrations take place in the yr- 
plane, We shall denote the deflection by 
z(y, t)* 

Let r be the volume occupied by the fluid, 

Fig. 1. X the surface bounding it, r$(x, y, z, t) the 
velocity potential of the absolute motion of 

the liquid. q5 is a harmonic function in r. On I% it satisfied the condition 
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where vR is the projection of the velocities of points of C upon the 

exterior normal to X In the given case 

Iiere R* is the unit vector of the exterior normal, y = eosf~%~~, 

Let HP, Q> be the Green function of the Neumann problem 

region 7. Let us introduce the Neumann operator 

Construct expressions for the kinetic and potential energy 

with a liquid 

1 I 1 

for the 

of a beam 

where p is the density of the liquid, The first part in the last equation 

is the potential energy of the elastic forces, the second part is that 

of the external forces, which are assumed to be conservative. 

2. We set the problem of fibbing the free vibrations of the beam. For 

this we let first 

2 (y; t> = cos ot8 (y), 9 = - o~sincot~(x, y, z), CD = IL.& (1.4) 

Since the use of the Ritz method is anticipated, we write down the 

equation of ~~ilton's principle 

6L-&\(T --II)&=0 (1.5) 
0 

After substituting in this equation the expressions for the function 

2 and # from (1.4) and also gutting t = ZR/'&, and by discarding an in- 

significant ~ltiplie~,w~ reduce the expression for L to 

Now let r$Bt be some complete set of functions o~thono~ali~~ in 

[O, El a ‘Ihen according to the Ritz method we must assume 
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where a,, are numbers to be determined. By substitution of series (1.7) 
into the expression for the functional L we obtain 

L = 69 2 Q&n (%aTn + mm) - z W&7I (Cnm + /%m) 
n, m n, m 

where 
1 1 1 

a nm = s 44 m n m d Y, c,,, = c nn mu 
s+ + dY 

0 0 

Thus, equation (1.5) will be reduced to a system of algebraic equa- 
tions 

The characteristic equation of this system 

( 0.3 (anm + mm> - (Cnm + Pnm) ( = 0 (1.10) 

will be the frequency equation. 

The coefficients ynrn can be called coefficients of additional fluid 
mass, corresponding to the set of functions 3,. Thus the inertia pro- 
perties of the fluid are determined by a symmetric matrix of infinite 
order. From the fact that in the general case y,, f 0 if n f m, it 
follows that the presence of the fluid inside the cavity changes not only 
the natural frequencies, but also the fundamental modes of vibration. 

3. The foregoing section contained an exposition of the formal scheme 
of applying the Ritz method, and it was established that the problem of 
hydromechanics can be solved independently of the dynamical problem of 
the system. (The f unc zons HJ(/, y depend only on the geometry of the cavity t’ 
and the choice of the $J” functions,and do not depend on the motion of the 
beam). 

When the computation scheme outlined above is realized, one encounters 
two questions. First, how to determine rationally the set of functions 
rlYJ , n, and second, how to construct the functions H$,,y effectively. 

Concerning the second question, it is very difficult to give any 
general recomnendations. With regard to the first question, one can in 
many cases recommend choosing for the functions {&,,I the characteristic 
functions of the operator 

L u = [cuyylyy + j3u = hamu (1.11) 



which satisfy boundary conditions corresponding to the conditions of beam 
support. If, for instance, both ends of the beam are free, then 

One can easily verify that in the 
the operator L is self-conjugate and 
equation (1,111 posses the following 
the weight m(y) 

U” (1) =u”(O) = 0 (1.12) 

case of boundary conditions Il. 12) 
that the characteristic functions of 
properties: they are orthonormal with 

and also 

(1.14) 

where All is the nth characteristic value of the L operator, 

lhese properties permit a great simplification of the system (1.91, 
since in this case 

The characteristic equation (I, 101 then becomes 

The infinite system (1.9) and the determinant (1,101 or (1 
always convergent. This fact follows from the general theory 
3). 

.* 

=o (1.16) 

16) are 
see Section 

If the beam is ho~g~~~s and the external forces are ~ifo~ly dis- 
tributed along the span (the functions c(y), p(y) and RI(~) are constants) 
then the construction ‘of the set { v’:, I is elementary. If the parameters of 
the beam vary along its span, then the construction of the system of co- 

ordinate functions is considerably more complicated, 

4. ~~ov~ii showed that from the dynamic point of view the rigid 
body which contains a cavity that is completely without a free surface) 
filled with an ideal incompressible fluid is similar to some rigid body 
without the fluid. lhe mass of such an ‘equivalent” rigid body is equal 
to the sum of the masses of the rigid body and the fluid, and the inertia 
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tensor is determined by the density of the fluid and the ~rnet~ uf the 
cavity* 

It is interesting to explore to what degree this fact influences the 
phenomenon under investigation, i.e. can one maintain that from the 
dynamic point of view the beam with a fluid is equivalent to some beam 
without fluid but with some other mass distribution along the cross- 
sections? 

In order to settle this question we set up the differential equations 
of motion for the system under study, 

Let us compose the l&k.ltonian equation 

L = L, + L2 
where 

t 1 t 

L ; $S{MZi2--CZyv2--Z2}dydt, L, =+psj (VHyZJdTdt IC- 

QQ 07 

I& ~~i~tio~ of the first fictional is ~o~ut~d by the st~da~d 
method. It is equal to 

we c ute the variation of the second functional 

61r A2 = p is (V H 7&)$7 H yG&)dsdt 

or 

then apply Green’s formula 
t 

6L ~=pSSH~~~~~oH76Z,d~rit 
OX 

S’ mce , after determining the II operator, G’Hu/c? nx = U, the expression 
for L, cm be simplified as follows: 

Here I, denotes the perimeter of the cross-section normal to the y- 
axis, whose ordinate equals y. Integrating (1.18) by parts with respect 
to t and taking into account the convergence of the variation yields 
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‘Ihe integration with respect to y in this expression can be assumed 

to be performed within the limits zero to 1. For that purpose it is 

sufficient to let H P 0 for values of y lying outside the interval [ y,, 

Y21- 

According to Hamilton’s principle 

6L, + 6L, = 0 

When one substitutes into this equation the expression for the vari- 

ations of L, and L, and uses the differential of the quantity 6Z, one 

arrives at the following integro-differential equation for flexural 

vibrations of the beam which contains a fluid inside: 

(1.20) 

‘Ihe first integral takes into account the inertia of the fluid, If it 

is equal to zero then we have the equation of flexural vibrations of a 

beam without a liquid. ‘Ihat is well explored. In this case the accele- 

rations at any cross-section are determined uniquely by the values of the 

elastic force and the external force at that cross-section. ‘Ihe value of 

the first term is determined by the character of the accelerations of all 

cross-sections of the beam. In other words, the hypothesis of plane 

sections is known to be incorrect for the fluid (fluid particles displace 

along the y-axis). Consequently, it is impossible to introduce an 

equivalent beam in the general case. 

5. The simpl if ications which are introduced into the calculations by 

reducing the problem of the beam with a liquid to a problem of an equi- 

valent ordinary beam are so significant that it is natural to explore 

those conditions under which such a replacement does not lead to large 

errors. A detailed exposition of this problem requires a rather large 

amount of space. Therefore, we shall present here only the final result. 

The hypothesis of plane sections can be used only in the case where 

the length of the beam is large compared to its other dimensions, In 

addition, it is necessary that the surface of the cavity differs only 

slightly from a cylindrical surface whose generator is parallel to the 

axis of the beam (y-axis). However, even in that case the hypothesis of 

plane sections can give a more or less accurate result only for the 

analysis of the first natural modes. 

Let us assume now that the hypothesis of plane sections is correct. 

This means that the fluid moves only in the plane of the cross-sections, 

normal to the axis of the beam. Let us denote by $y(n, z) the velocity 

potential of the fluid flow at a cross-section, whose ordinate equals y 

and by H the Neumann operator for this section (a plane figure bounded 

by the cktour ly). Then 
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Here y, = cos(nl ‘z”) is the direction cosine of the normal to 1 in 
Y 

the xl-plane. 

Introduce the notion of an additional fluid mass per unit length 

mH, (Y) = P s 
lu 

-Q$,r, dl 

Then the kinetic energy of the beam-fluid system can be written in the 

following form: 
2 

T = $ s (m (Y) + m,, (Y)) 2,’ dy (i .24) 

This expression shows that 

the investigation of flexural 

the same bending rigidity but 

in the case studied the problem reduces to 

vibrations of an “equivalent beam” having 

a changed mass per unit length. 

m’=m+m 
f 

2. Flexural vibrations of a beam in the case when the 
liquid substance contained inside has a free surface. 1. It was 

established in the previous section that if the fluid fills the cavity 

completely, then it does not add any new degrees of freedom. The motion 

of the fluid leads in this case only to some change in the magnitudes of 

the natural frequencies and principal mode shapes in comparison with those 

which the beam would have if it did not contain any liquid. 

0 

If the liquid has a free surface on which waves can be formed, then 

the motion of the liquid leads to the appearance of an additional natural 

frequency spectrum and additional principal modes. 

Thus, let the fluid have a free surface. We introduce still another 

Ilfixed” coordinate system xlylzl such that the plane xlyl coincides with 

the free surface of the fluid in the equilibrium position. Ihe axis ozi 

will be directed upward (in the general case, in the direction of the 

body forces), as is shown in Fig. 2. 

‘Ihe region T will now denote the volume bounded by the wetted surface 

of the cavity (surface 2) and the free surface and the free surface 

(plane surface S). Because of the linearity of the problem the velocity 

potential of the absolute motion of the fluid can be written as follows: 

(2.1) 
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where z1 = [(t, nIyI) is the equation of the 

free surface and the velocity v is determined 

from the formula v = Z tcos(nzY = 2, y. n 

The operator H has been already determined. 

The operatory II' determines some function in r 

whose normal derivative on C is zero, and on S 

is equal to ay/at - v”. 
Fig. 2. 

Casing the assumption of incompressibility 

and the hypothesis of plane sections (from which it follows that the 

volume of the beam remains unchanged) we establish that 

From this it follows that the function H*(a(/at - vn) is harmonic 

in 7. 

To proceed further it is convenient to introduce the quantity 

II is the additional displacement of the liquid due to the waves form- 

ing on its surface, z1 is the displacement of the points on the surface 

S due to bending computed in terms of the rlylzl coordinates. 

The kinetic energy of the system investigated is given by 

0 + 

+ p 1 (V H 65) (V H’G) dT + $ p \ (v H’&)‘dr (2.2) 

The potential inergy of this system is eqial to the sum of the potential 

energies of the elastic and external forces and the potential energy of 

the fluid (which is determined from the change of the position of the 

center of gravity of the liquid mass): 

1 

11 = +\ c(Z,#dy + 2 c L\ ;JZ?dy +p&dr 
0 0 T 

Let us evaluate the last integral in this sum: 

\ z1 dT = $ \ C2 dx, dyl - -$ \ z;’ dxldy, 
s s 

Here z1 = zI*(xl, yl, t,) is the equation of the x surface in the 

xlylzl coordinate system. Since < = U+ z1 
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5 El dr = $- 
s 

U2dxldyl + i UZ,dxldy, -j- J 
T s s 

e last part of this sum has the following str~~~~~e~ 

where F(y) is a knwn function (which does not depend on time). ‘Ihus, 
this part has the same structure as the potential energy of the external 

fmces. It should be so because J determines that part of the energy of 

the force of gravity which depends only on the deflection. ‘Thus, the 
value J can be included in the expression for the potential enern of 

the external forces after changing the function ,/3 in a suitable manner. 
Thus we will have 

2. The equations of motion can be constructed in the simplest way if 

one uses Hamilton’s principle 

‘Ihe variation af the first functional was evaluated in the previous 
section of the paper: 

t I 
a, = - 

su 
‘m&t + (c&,,),~ + BZ t p ‘j yH $&t dl 

1 
62 dy dt wo 

00 4l 

Let us evaluate the variation of the second functional: 

G, = pi ‘j (aEi’ $5) (.izEP Q&) cils dt -j- p\ \ (vH +Zt) (‘c7H* U,) dcdr f- 
ov5 0: 

-wi -y/H* Ut. v.H* SUt dT dt - 
OT 
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-pg~~u61Jdsdt-ppg~~U~~zdsdt-p~~j~Z6udsdt (24) 
Ok OS OS 

Use Green's formula and the fact that 

aHv 
---z-_ (P6C-t.4, (P 6 4 

an (P E 8) 

This allows us to represent expression (2.6) in the following form 

Integration by parts (with respect to t) and utilization of the iso- 

chronous property of the variation yields 

-p\ \ yH*lit4Zdsdt-pg[ ‘$J6Zdsdt (2.7) 
; c&k OS 

By substituting (2.5) and (2.7) into equation (2.4) and using the 

independence of the variations we obtain the following equation: 

m&t -I- p \ yH r&t d$- p \ yH* Utt dl I (G,,),,, + V’ + pg \ yU dl = 0 

$I $1 ;1 

HrZtl + H*Utt + pgU i- pg yZ = 0 (2.8) 

Here d denotes the line of intersection of the surface S with the 
plane of a normal cross-section. 

Thus the motion of the beam-fluid system in the given case is described 

by a system of two integro-differential equations. 

3. We shall use the Ritz method to determine the natural frequencies 

and principal mode shapes. To do it we substitute into equation (2.4) 

(2.9) 
Z(Y,t) =cos@.@(j/) yon [O; 11, U(P,t) = cosmtf(P) P on S 

The problem of determining the natural vibrations reduces to the 

minimizing the following functional: 
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L* I= wa {t 5 ma2dy + $ p \ (vH$~)~ dT+ p 1 (vH$+)(VH*I) dT + 
0 T 5 

+~p$(vH*f)2dr)-_t~[(cW’)2+~42]dy-&p~~2ds-_pgj~~~ds (2.10) 
5 n S 

In order to solve this variational problem by the Ritz method it is 

necessary to choose two sets of coordinate functions rcI,(y) and x, (P), 

which are complete and orthonormal on [ 0, II and S, respectively. ‘lhen 

we put 

5 = Ca&n, j = Cb,xn 

After that this problem is reduced in the usual manner to a system of 

homogeneous algebraic equations with a symmetric matrix. 

‘Ihus the problem of the study of free vibrations of a beam inside which 

there is a liquid having a free surface reduces to constructing the H 

and H* operators (for this purpose it is necessary to be able to solve 

numerically the Neumann problem for the region r 1, to constructing a set 

of functions JI, and x, , and to setting up and solving a homogeneous 

system of algebraic equations. 

The previous sections contained a formal analysis of the problem. It 

was demonstrated by means of an example of a simple none-dimensionaln 

motion that it is possible to reduce the problem to an algebraic one. The 

general case of small vibrations of a beam is studied below, where the 

main attention is focused on the problem of the existence of principal 

modes and the properties of the spectrum. 

3. Arbitrary vibrations of the beam. Some general problems 
of the theory. I. Reduction to a functional equation and some simpli- 

fications. Let us denote the deflection in the nOy plane by X(y, t) and 

the angle of twist by 0(y, t ). ‘he kinetic and potential energy of the 

beam without the fluid can be written as 

n, = -$ \ {C1L2 4 czzyy2 

(3.1) 
f C,0y2 + B,X2 + B2Z2 + B,02} dy 

0 

Here Ci are the bending and torsion rigidities and Bi are functions 

characterizing the external forces. 

‘lhe normal velocity component of points on the surface of the cavity 

is expressed in our case by the formula 
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Introduce the elastic d~~~l~c~~~t of points in the plane: 

~i~~l~r~~, as it was done in the previous section, we shall introduce 
a function UP, t): 

speating then the ~~aso~i~~ of the previous sections we can write 
the expressions for the energies, the functional L and the integro- 
differential equation elf motion 

T=W$pp Xtrt Jr ~H~~~~ -d- ~~~~~~ -k P 

II=n*+~P~SUeds+p:~U(Xrl+Z_i*i~~~~ds 

(=I 

s s 

(3.4) 

Tn order to study the existence of periodic solutions of the system 
f3.4) to (3.7) and to analyse ttte pr erties of the s~~ct~rn, it is ex- 
pedient to write this system in operational form, 

Let us ~ntr~dnc~ the f~l~o~in~ fiction spaces: 
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Function spaces E, and E, of functions u 
square on f0 t], possessing generalized F 

(2) and u2 (y 3 with a 
ourth derivatives and a 

product 
I 

(U$, Vi)i = 
s 

u;i vi dy (i = 1, 2) 
0 

A f~~t~~n space E 
possessing genera 4 

of functions u9 (y) with a sumed square 
ized second derivatives and a product of 

_. 
type (3.8). 

(3.8) 

on 
the 

fc) A Hilbert space E, of f~~t~o~s ~~~~~~~~~w~tb a sled square 
on S and with a scalar product of the form E = El1 -f- E, -/- E, + E4 

(%, y*)4 = 5 CAVE dcc, &l (3.9) 
S 

(d) A direct sum of the function spaces E = E, + E, + E, + E, with a 
scalar product 

4 

Here x is a vector with components “I’ uzl u3# uli. 

Tbe functions Ui should also satisfy some boun ary conditions which 
etermined from the type of beam support. We shall not specify these 

conditions in detail. We shall assume them to be homogeneous and such 
that they insure. the self-conjugate property of the operators which 
describe the elastic vibrations of the beam without the fluid, 

We introduce the operators Lij and Mij acting from Ej to Ei: 

Since H is an integral operator (1.2), whose kernel is a Green’s func- 
tion, then in order to have the operators L. . and hl. . act from 6,. to I;,, 
it is necessary to i~~se some ~~rnitat~~~s $on the ‘ f uuctions A .!, C. 
and 13,. We shall not stop to consider these questions, but ass&! on& 
and far all that these functions satisfy all necessary conditions, 

Let us also introduce operators L and M in terms of the following 
equalities: 
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With this notation the system (3.4) to (3.7) becomes 

Lxgt+Mx=O f (3‘1~~ 

t;t us explain some properties of the L and !A operators. Operator L 

is self-conjugate, i.e. 
4 

(LX, y) = (a;, L,Y> or 2 (Lij uj, Yi)i= x (ui3 Lij “j)i (3.11) 
i,j=1 i, 3=1 

The validity of equations of this kind is established by a simple 

verification. 

Thus, the L operator is self-conjugate, However, it is not completely 
continuous. This circumstance complicates the proof, 

o d 0 S 

After comparing this expression with equation (3.2) we have 

(~~~~)~~~ (3.12) 

Remark. In order to be convinced of the validity of formula f3,12), 

it is necessary to use the self-conjugate property af the boundary con- 

ditions for the functions ai(i = 1, 2, 3). 

In order that the problem make sense it is necessary that the func- 

tional fi be positive definite. Questions regarding the conditions which 

have to be satisfied for that purpose by functions Ci’ yi 8nd f~i are not 

trivial e However, this investigation is greatly ~~mpli~~ed because of the 

following fact. 

Theorem. For the functional fl to be positive definite it is necessary 

and sufficient that the functional n* be positive definite, where 
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and the functional 11. is determined from formula (3.1). 

In order to be convinced of the validity of this theorem, it is suffi- 

cient to perform the following substitution in the expression for the 

potential energy: 

u= U-yylx-+--~~e (3.14) 

After that the functional n has the form 

n=l-J*+$pg 
\ 
v2ds 

A+ 

This theorem, which is a generalization of the analogous theorem of 

the theory of motion of a rigid body with a fluid (see reference [ 2 I), 
has a principal character. It shows that the question of the stability 

of a beam, inside which there is a liquid mass having a free surface, 

reduces to the study of the stability of the same beam without a fluid 

but under the action of another system of external forces. The potbntial 

energy of the changed system of forces differs from the potential energy 

of the original system by terms that are identically determined by the 

density of the fluid and the geometry of the cavity. 

The positive definite quality of the functional n* will thus denote 

the fact that in the equilibrium state the potential energy of the beam- 

fluid system has a minimum, and consequently this state of equilibrium 

will be stable. (Strictly speaking, this statement is still to be proved, 

as will be done below). 

In the following we shall assume that the functional JJ*, and con- 

sequently also the operator M, are positive definite. 

Ihe operator M is self-conjugate. This fact is established by a direct 

verification. 

2. Study of the quadratic functional n*. It is rather complicated to 

study in general the necessary and sufficient conditions for positive 

definiteness of the functional II*.Jiowever, it is very simple to set up 

the sufficient conditions only, and in addition they will have a simple 

physical meaning. 

Let us first study the simplest case of only torsional vibrations 

of the beam. Ihe functional JJ* will then have the form 

II* = $1 {c,0v2 + ps92-6,82} dy (bs (Y) = Pg 1 rs2 q (3.15) 

0 d 
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If one assumes 
conditions can be 

R.N. loiseev 

that C, never goes to zero, then one of the sufficient 
written inznediatefy (see, for instance, [ 4 1 , pa 122): 

133 > b3 (3.16) 

Using the expression yg = z cos nx - X cos nz, equation (3.15) cm be 
written in the form 

Here Jxx, JtZ, JXz denote moments of inertia of a segment d. 

If the axis of the beam is horizontal then z” = no, and then 

b f&J = PSfrx ~~.l~~ 

If the axis of the beam is vertical then y” = n$ and then b(y) = 0, 
i.e. the fluid does not influence the sign-definiteness of TT. Thus, for 
the functional to be positive definite (and consequently, also for 
stability of the equilibria position) it is sufficient to satisfy the 
~ondit~~~ which is identically determined by the ~~~tri~al charaeter- 
istics of the free surface and the density of the fluid, 

If the beam undergoes only flexural vibrations in one of the planes 
then similar conditions are derived analogously, In that case 

l-l” = f s {ClX,,” + @I - b,) X2} dy (bl CY, = I% 5 712 dJ) 
I3 d 

Since yi = cos nx, therefore b, = p gd cos2nx. For future use let 

Jik = p$T s ri Tk & 
d 

‘Ihe criterion for the form of (3,161 can also be easily obtained for 
the general case, For that purpose let us represent the functional II* 
in the form of a sum: 

where 

For the functional Il*, to be positive definite it is sufficient that 
for an arbitrary y IO, 11 the functions ci satisfy the inequalities 
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ci > si, where Si are arbitrary positive ~~~r~ that can be as small 

as is desired. For the functional l-I** to be positive definite it is 

sufficient, for instance, that the following conditions be satisfied: 

81 -A, > al, (PI - A,) cpz - J22) - p2g2J12 > a2 (3.19) 

i p*-Ju -Jtz - J13 

- Jtl B2 - J22 ---a > z3 (3.20) 

- JBf - JSZ ;j3- Jsa 

where ir 

desired! 

are arbitrary positive numbers that can be as small as is 

Tlese conditions are analogous totheSylvester inequalities. They im- 

pose limitations upon the geometrical characteristics, and one can express 

them in graphical form. We shall demonstrate this with an example of 

flexural vibrations in two mutually ~~~endic~lar planes, 

In this case conditions fJ,ZO) can be written in the following farm 

Cl 1 

Consequently, in order to satisfy these canditions,the quantities ,f!$ 

and ,Bz should b e such that for an arbitrary y Eo lf the point ,Bi/$, lie 

in the shaded region of the plane P,o p2 (Fig. 3). 

The conditions that we have just considered are 

very crude. Intuitively, it is quite clear that if 

the rigidity is positive then in order to insure 

positive definiteness of II'it is not at all necessity 

that the external forces have a restoring character. $+q 

Let us study vibrations with "one degree of free- 

dom", for instance, torsional vibrations. We have 

1 

IT = \ c,~,2dy -I- s r (& tPdg 

Fig. 3. 

(j (#) = ~3 - pg 1 r’dl) 
0 d 

and let r >, - where 6 is some positive number. Then 

Evaluate from below the first term of the right-hand side. Since 
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then 

Rut one can always assume that 

s 8dy = 0 
0 

and thus the foregoing inequality leads to 

From this it follows that for positive definiteness of the functional 

n*, it is sufficient that function c3 satisfies the inequality 

(3.21) 

This condition imposes a lower bound on the rigidity c3. It will be 

necessarily satisfied if it is required that function c 7 satisfies the 
inequality 

c3 (Y) > *‘r (3.22) 

where q is a positive number chosen in a suitable manner. 

A condition of the form (3.22) can also be obtained in the case of 

arbitraty small vibrations. The following statement can be proved. 

For positive definiteness of the functional II * it is sufficient that 

the functions Ci satisfy the inequalities 

min Ci > 7ji, Y c [04 (i = 1, 2, 3) (3.23) 

where TJ i are some completely determined positive numbers. They depend on 
the character of the external forces and on the geometry of the liquid 

cavities and the density of the liquid. 

3. Proof of the existence of principal modes. ‘Ihe problem of determin- 

ing natural vibrations reduces to the study of the spectrum of the 

operator equation 
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Lx= -+c 

where the L and M are self-conjugate operators and M is positive definite, 
The L operator is not cowletely continuous. This circumstance requires 
some additional calculations. 

We perform the substitution (3.14) in the expressions for T and T’I and 
set up new equations of motion. In the simplest case of purely flexural 
vibrations this system becomes 

A&t + p 1 TIH,TJ& -t- p 1 ~H’rttdlt (cJ&),, i pr’x = o 
i-d I-d 

H,rJtt + I-l’vtt + pgu =L 0 

Here 
(3.24) 

Let us recall that HP, Q) is the Green function of the Neumann 

problem for the region r. The outstanding feature of the transformed 
system (3.24) in comparison with the system (3.3) to (3.7) is the fact 
that its first three equations do not contain terms with v in them (the 
first equation contains only derivatives of that function with respect 
to t). 

Introduce the function space E *= E, + E, + E3 + and let w* E * . 

Then the system of equations of motion in the general case can be 
written as follows: 

&e&t* + I& + NW* = 0, pff,rlWf’ -I PN’Vff + pgv = 0 (3.25) 

Here 

B = (Lij); Dv=p 
s rl= tb 7%~ %3u 

I-d 

The operators L* . . (i = 1, 2, 3) differ from the operators L.. by the 
fact that under the’ktegral sign the operator H is replaced biJH, and 
the integration extends over the interval 1 - d. 

The syarnetrical operator N is determined by the matrix 11 pij 11 , where 
the numbers /3,, (i f j) are given by the formulas 

d 

It can be easily verified that the operator 
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just as the operator L, is self-conjugate. In order to be convinced of 

this it is sufficient to check the validity of the equations 

(Aw7 WI) = (L X2 Xi)7 (ref, AwJ = (2, Lx,), (WCE) 

The elements w and x are related by the equation (3.14). 

The operator N is unbounded and positive definite. Its inverse N-I is 

a completely continuous integral operator. The structure of this operator 

can best be seen by considering a particular case. For instance, if one 

studies purely torsional vibrations then the equation Nu =f becomes 

and consequently 

Q(P)= ~G~~~~~~~~~~~ 
0 

where G is the Green function taking into account the corresponding 

boundary conditions and having a weak singularity. 

To find periodic solutions let 

u3* = wco~~~~, 1: = ycosw,t (3.26) 

System (3.25) becomes then 

B*+DIJ=$&lI, pHJ',w + PH'Y =-$-P~Y (3.27) 
n 

Here we change the variables 4 = N1'2~ and += \ipgy. We obtain 

(3.28) 

Since the operator R is bounded, N-1’2BN-1’2 is completely con- 

tinuous (inasmuch as NW1 is completely continuous). Operators D, H 1 and 

II*are completely continuous as integral operators with weak singular: 

ities. Consequently, the operator that determines the left-hand side of 

the system (3.28) is completely continuous. Similarly it is easily 

verified that the operator 



Vibrations of elastic bodies 

is self-conjugate. 
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‘Ihus we have arrived at the characteristic value problem 

Rf=hf 

for the completely continuous self-conjugate operator R. 

On the basis of known theorems of linear analysis we can establish the 
validity of the following fundamental theorem. 

Theorem. If the quadratic form l’l is positive definite then the system 
(3.3) to (3.7) has a periodic solution (principal modes of vibration) of 
the form (3.26), where on are positive numbers (natural frequencies), 
forming a sequence such that on + m as R + =. 

This theorem contains Lagrange’s Theorem on the minims of potential 
energy as a special case of the given problem. The proved theorem indi- 
cates that if the potential energy of the beam-fluid system in the 
equilibrium state has a minimum, then this equilibrium state is stable 
in the sense that all principal oscillations of the system are bounded. 

4. Proof of completeness. ‘Ike system of principal modes of vibration 
is complete in E, In order to show this we shall write the f~d~ntal 
operational equation in the form 

M-II-l x = hx 

Introduce the Friedrichs norm (x, Y)~ = (Mx, y ). For the proof of 
completeness in the Friedrichs norm it is sufficient to show that from 
the condition M- ’ Lh = 0 it follows inmediately that h E 0. Consider 

(MPL h.h)F = (Lh*h) 

The scalar product on the right is the kinetic energy. Consequently, 
if h f 0 then this expression cannot be equal to zero, Consequently also 
M-ILh f 0. 

‘lhe completeness of the system of principal modes allows to find the 
solution of the Cauchy problem in the form of a series composed of 
principal modes. 

‘lhis completes the proof of the existence of a complete set of 
principal modes of the system studied. At the same time the proved state- 
ments substantiate the use of the Ritz method, whose scheme was discussed 



1254 N.N. Moiseev 

in detail in the first Section of this paper. 

A short summary of several results of this article were published in 
the Dok 1. Akad. Nuuk SSSR (see [ 5 1 1. 

Ihe author expresses his gratitude to A.A. Abramov and M.A. Neimark 
for a number of comments and suggestions. 
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